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We present a method of analyzing spatiotemporal signals emerging from nonequilibrium self-
organizing systems that are close to instability. The algorithm aims at an identification of spatial modes
and corresponding order-parameter equations. We discuss and demonstrate the method by examples of
simulated codimension I and II instabilities, including a numerically integrated partial differential equa-

tion leading to “blinking states.”

PACS number(s): 05.90.+m, 02.60.—x

I. INTRODUCTION

In various fields of science the analysis of spatiotem-
poral patterns emerging from complex systems is an im-
portant element of research. The aim is to obtain a mi-
croscopic description of the system in terms of spatial
patterns and their dynamics. Fields of application can
vary from hydrodynamics (e.g., [1]), chemical reactions,
and meteorology (e.g., [2]) to biological systems, such as
the analysis of EEG [3,4] and MEG data [5,6]. One
hopes to draw conclusions from the experimentally ob-
tained macroscopic patterns to the microscopic level and
to obtain a deeper insight into the cooperation of various
components of a nonequilibrium system [7].

Up to now there seem to exist three different ways for
analyzing spatiotemporal signals. The first one, which
has been extensively studied in the past, focuses on the
temporal evolution of the signal. Here, the dynamics is
characterized in terms of metric properties of the under-
lying attractors like Lyapunov exponents and fractal di-
mensions [8]. On the other hand, great efforts have been
made in reconstructing the dynamics by introducing
time-delay coordinates [9] or principal component
analysis (with respect to the temporal evolution) [10].
Furthermore, attempts have been made to fit sets of ordi-
nary differential equations to the experimentally obtained
time series [11,12]. Yet there are still open questions con-
cerning the applicability, reliability, and significance of
these techniques [13-15].

A second approach concentrates on the spatial features
of a signal, with the aim of finding a mode expansion con-
verging best with respect to the least-square deviation, by
applying principal component analysis (compare Sec.
III B and e.g., [1,16]). In case where the evolution equa-
tion of the system under consideration is known, as e.g.,
for hydrodynamic problems, it is possible to obtain finite
dimensional Galerkin approximations to the dynamics by
projecting the evolution equations onto the modes ob-
tained by the principal component analysis.

A third approach has been discussed by us in a previ-
ous paper [17]. Here, we restrict our attention to the
class of complex systems that are close to nonequilibrium
phase transitions where the behavior changes qualitative-
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ly. These systems are studied in the field of synergetics
[18,19], and it is well known that the spatiotemporal sig-
nal of such systems can then be described by a finite num-
ber of order parameters, which are amplitudes of spatial
modes, and stable modes, whose amplitudes are deter-
mined by the other parameters. The dynamical evolution
of the system is entirely governed by the dynamics of the
order parameters which obey a finite dimensional set of
ordinary differential equations. The natural way to ana-
lyze spatiotemporal signals of such systems, therefore,
consists in identifying the order parameters of the system
and determining the dynamical system governing their
evolution.

A presentation of our method as well as its applica-
tions to instabilities with low codimension is the topic of
the present paper. It is organized as follows. In Sec. II
we briefly sketch the mathematical representation of the
state vector of complex systems close to instabilities in
terms of order parameters, unstable and stable modes.
Then we present an outline of the general procedure of
our algorithm. In Sec. IV we treat various types of
codimension-I and -II bifurcations. Finally, we analyze
spatiotemporal patterns, the so-called blinking states,
which have been calculated from a partial differential
equation modeling the oscillatory instability towards
traveling waves of a spatially homogeneous state in large
but finite quasi-one-dimensional systems.

II. SYSTEMS CONSIDERED

Spatiotemporal patterns may emerge in self-organizing
complex systems exhibiting qualitative changes of its
macroscopic behavior near instabilities [18,19]. The
mathematical structures underlying these processes of
spontaneous pattern formation are well understood. In
the following we shall summarize the main characteris-
tics.

The state vector @(z), which describes the pattern
forming system, is assumed to obey a nonlinear evolution
equation,

4=N({€},q) , (1)
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with {e} being a set of control parameters. Close to in-
stability the state vector  can be represented as a super-
position of unstable () and stable modes (§) according to

qu)= 3 &, (u+ T & (15, )

where @ and § may be space-dependent vector functions.
It is a well-established fact that close to instability the dy-
namics of the amplitudes of the stable modes £,(z) is
determined entirely by the amplitudes £,(z) of the unsta-
ble modes after transient behavior has died away: the
amplitudes of the stable modes £,(¢) are “enslaved” by
the order parameters £,(z) of the system. In mathemati-
cal terms, the amplitudes £ (¢) move on a center manifold
obeying an equation of the form

E(=f[{,()}]
= 2 ks(lfu)’gugu’—f— 2 ks(glz'u”gugu'gu”_‘— et (3)

i
As a result the temporal evolution of the order parame-
ters is determined by a closed set of nonlinear order pa-
rameter equations,

§.=fulte} {£,1]
=a1(40)+a1(4”§u + 2 at(uztzu”gu’gu"

u',u"
+ 3 e bbbt @)
u'u",u'"

Thus a pattern forming system allows for two levels of
description. The microscopic level is determined by the
basic evolution law (1). The macroscopic description is
based on the representation (2) as well as on the order pa-
rameter equation (4). This forms the theoretical scheme
of the description of the state vector of a pattern forming
system close to instability.

It is immediately evident that a macroscopic analysis
of spatiotemporal patterns of this class of systems should
aim at a determination of order parameters and enslaved
modes. To achieve this, one has to simultaneously deter-
mine the spatial modes 1,5 as well as their dynamical
evolution, i.e., the coefficients of Egs. (3) and (4). This
will be described in the next section.

To conclude this section we remind the reader that the
above outlined framework of the description of a pattern
forming system is valid for systems close to instabilities,
but recent results on the existence of inertial manifolds
shows that it may also hold for more general situations.
Our method of analysis also applies to these cases.

III. PROCEDURE

A. The number of order parameters and their dynamics

In order to apply our procedure to spatiotemporal sig-
nals one first has to specify the number of order parame-
ters. Presently, we are not able to indicate a way to ex-
tract this number from the signals. In the present paper,
we assume that the character of the instability is known
so that the number of order parameters is fixed. The
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dynamical system of the order parameters can then be es-
tablished in the following way. Since the system is close
to an instability, nonlinearities are weak and may be ap-
proximated by polynomial expressions. Furthermore,
symmetry considerations as well as normal form argu-
ments may help to restrict the number of polynomial
terms. In general, one has to start making guesses about
the number of order parameters that has then to be
confirmed self-consistently.

B. Projection into the relevant subspace

Our starting point is a given trajectory q(z) in an n-
dimensional space I',. The vector components g;(¢) can
either represent the spatial dependence of a spatiotem-
poral signal g(x;,¢) with discretized space elements x;, or
other experimentally accessible quantities. Since the tra-
jectory q(z) may move in a subspace I',, CT,,, it will be
sufficient to analyze the signal in T,,, i.e., to project
q(t)eT, into I',, calling the resulting trajectory q(t).

One way of detecting the relevant subspace T',, is given
by the principal component analysis (PCA, also known as
Karhunen-Loeve decomposition, see e.g., [1,16]). To ac-
complish this one has to solve the eigenvalue problem,

Cv;=M\v; , (5)

of the correlation matrix C

tan+T
~1T-ft° 7.(0g,(1)dt . ©)
0

The eigenvectors v; with nonneglectable eigenvalues A;
span the subspace I',,. This restriction may simultane-
ously lead to a noise reduction of our signal.

Note that PCA is only a first and often dispensable step
of our analysis which in particular aims at determining
the adequate vectors in the subspace I',,. As it will turn
out the resulting spatial modes in general differ strongly
from the original PCA modes.

Cij=<qiqj):=

C. Parameter identification

The determination of the spatial modes and the
coefficients of Egs. (3) and (4) is achieved by means of an
extremum principle. To this end we introduce a set of
biorthogonal modes s', uT, s, and u, which obey a relation
of the form

uT-u’ZSu,u,, st-u=0,

(7)
uT-s=O, sh-s'=8

The amplitudes £,(¢) and &, (2) are, therefore, given by
£()=q(1)s", £,(0=q)u". (8)

Now we introduce the potential ¥ as the mean square
deviation of Egs. (3) and (4),

(= LESDD (Eamfulle) DD
(&) 2 (€2) ’
9)

=2

s
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The denominators guarantee an equally weighted contribution of every term of the sum to the potential. Inserting Egs.

(3), (4), and (7) into Eq. (9) one obtains a potential V,

V=V[{u

depending on the biorthogonal modes u’,s" and the
coefficients of the center manifold {k} and the order pa-
rameter equation {a}. The minimum of this potential
yields our desired description of the spatiotemporal sig-
nal in terms of order parameters, enslaved modes and the
corresponding spatial patterns.

In general the potential (10) is rather high dimensional
and a straightforward search for the minimum is practi-
cally very difficult. However, the following observation
allows a reduction of the unknown variables. The
coefficients of the dynamics, {k},{a}, as well as the spa-
tial modes s’ occur only up to the power of 2 in the po-
tential V, and therefore, the minimum of V with respect
to these parameters can be obtained analytically as a
function of the modes u' (for mathematical details we
refer the reader to the Appendix). Inserting these
minimal values into our potential yields a nonlinear func-
tion depending solely on the unstable modes

v=v[{u'}]. (11)

The minimum of this function, which can be found by
gradient dynamics, represents the best choice of parame-
ters for the assumed type of instability.

In the following we present the four generic cases of
codimension-1 instabilities, a codimension-2 instability
with reflection symmetry, and the application of the algo-
rithm to a simulated spatiotemporal signal of a problem
of fluid dynamics, simulated by integrating a partial
differential equation.

IV. EXAMPLES

A. Steady-state bifurcations

In these cases there exists only one order parameter £,
with three typical types of bifurcations, the saddle-node
bifurcation with normal form

E,=etr&2 (12)
the transcritical bifurcation with normal form

. =€, 18, (13)
and the pitchfork bifurcation with normal form

E,=€E,TE . (14)

As an example we assume one stable mode s with its am-
plitude &£.(1),

E()=KkE (1), (15)

neglecting as a first approximation terms of higher order
than £2.

The least-square-fit potential, taking all three bifurca-
tions into account, is given by

NsTL k. (a0, (e M), (a2,

. ]+ (constraints) , (10)

—

(&, k&)
V({ai},k,sf,u’r)=i

(&)
+ <(§u *ao‘a1§u"“12§i _asgi )*)
(£2) ’
with
£,=q(1)s’, &,=q@)u’, (16)

with q(¢) being the spatiotemporal signal q(¢) projected
into the relevant subspace.

As constraints we define {£2) =c,, which we include in
the potential by a Lagrange parameter and (£2)=c,,
w*hich is considered explicitly as a constraint concerning
u'.

Variation with respect to k and s’ after elimination of
the Lagrange parameter yields
— [Ty ‘F3( u’r)4]1/2
k=k@h=1/c,

r,(uh?

— I;r, )2
— oty = 2 03
(WhH=1"c, [1“31"2_ll"3(:u7)4]1/2 ’

>

(17)

We thereby introduced symmetric correlation tensors I',,
I';,and Iy,

(Ty);=(q:9;7» (T3)iy=(gq;9;91) » a8
(Tijir = <‘11q,‘1k¢11> ’
and abbreviations such as
I-‘4(3‘1“4: 2 (1—‘4)ijkl“iTu;rull‘“;L )
ijkl
05 TyuN= 3 (D) Dy DTyt fuf )

ijklmn

The inverse T'; ! of the correlation matrix I, exists, since
q(t) is the trajectory of g(¢) projected into the relevant
subspace.

By variation with respect to the coefficients {a
tain

;] we ob-

—1

a, 1 (&) (&) (&) (E)
a (£,) (&) (&) (&) (6u&.)
ay |- (&) (&) (&) ()| [(&e) |’
ay ] (&) (&) (£5) ()| [(£.8)

(19)

which again can be written as a function of uT, whereby
correlation tensors I'; up to the sixth order and correla-
tion tensors A;,
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(A);=(4;), (A2)ij=(qiqj) ’
(20)
(A3)ipe={d:q;q5 ) - - -

occur.

By inserting Egs. (17) and (19) into the potential V [Eq.
(16)] we obtain a nonlinear potential V(uh) depending
only on u

vh=v,hH+v,whH,
138 ) BN

v.(uh=1 ,
s(u) r,(uh)?
1 _
v, (uh=1———-—M"[u"Cy[u])?, 21
L(u') A [u']Cy[u']) 21
with

(Az)ij:(‘?in)
ylu'1=(A,(uh), Ay(:u"2 Ayu"), A (uDHHT
Ty(au')? Ty
r,u’) reuh? ryea’)? reah)?
reu'? rya’? rea’)* rygea’)’
yauf)? r,euh)* rya’)’ rgah)e

1 Fl(:uT)

M[u']= (22)

If the signal q(¢) consists of two modes @ and § the sub-
space is two dimensional. u' can then be written as a vec-
tor with two components,

X1

t—

u'= R (23)

X2
which has to fulfill the constraint
(£2)=([q(n'P)
=(g?)x3+2(q,q,)x,x,+{(q3)xi=c, . (24)

If the signal q(z) was projected using PCA, (g;q;) is
given by

(q:9;>=M1;8;; , (25)

with A; being the eigenvalues of Eq. (5). Equation (24)
then describes the normal form of an ellipse in the plane.
We can introduce polar coordinates and obtain

ricos¢

» ri=le, /M1,

r,sing

(26)
r=[e, /M) .

The potential ¥V [Eq. (21)] now depends only on one pa-
rameter, the angle ¢

V(g)=V(d)+V,(¢), (27)

with a translational symmetry V(¢)=V(¢+m), due to
the still possible scaling of uf with —1.

Figure 1 shows the potential V' (¢) calculated from
simulated spatiotemporal signals q(z)=§&,(1)u+&(2)5.
The amplitudes &,(¢) and £,(¢) were obtained by numeri-

cal integration of ordinary differential equations showing
the three different types of normal forms [Egs. (12), (13),
and (14)] and a center manifold like Eq. (15). As spatial
modes ,§ we chose the modes shown in Fig. 2(a). The
dashed line of Fig. 1 represents V,(¢), the dotted V (¢)
and the solid line the sum of them, V=V, + V. In all
three cases we obtain a distinct minimum of the potential
V representing the right choice of parameters. The term
V.(¢) helps to avoid additional local minima, occurring
in V,(¢). They are due to the fact, that—besides §, —a
certain linear combination of &, and &, £=a&, +B¢E,,
fulfills in a good approximation a differential equation of
the form

§=ao+01§+a2§2+a3§3 . (28)

For example, in Fig. 1(c) we plotted the potential

V =V,+V, of the Haken-Zwanzig model,
é:s =—§&+ kgi ’

E, €8, tr8uE; -

(29)

05 04 03 02 -01 00 01 02 03 04 05

107
05 04

-3 -02 -01 00 o1 02 03 04 05

FIG. 1. Potential V' (¢) (solid line), V,(¢) (dashed line), and
V,(¢) (dotted line) for different simulated types of bifurcations:
(a) saddle-node bifurcation, (b) transcritical bifurcation, and (c)
pitchfork bifurcation.
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(b)

FIG. 2. (a) Simulated spatial modes @ and §, (b) the resulting
two vectors of PCA, and (c) modes, obtained by our method.

There occur two deep minima of V, (dashed line): one,
coinciding with the minimum of ¥V, and, therefore, the
searched one representing =0, and an additional local
minimum of V, representing a=0, since for a=0,
E~PRkE,E, =PB(2eE+2yEY) fulfills the differential equa-
tion (28) as well.

Figure 2(b) shows the two modes obtained by PCA,
calculated from the simulated spatiotemporal signal of
the Haken-Zwanzig model. The modes @ and § obtained
by our algorithm are presented in Fig. 2(c). They are in
quite good correspondence with the modes of the simu-
lated data [Fig. 2(a)]. That there is no perfect agreement
is due to the ansatz of ¥V and V,. The Haken-Zwanzig
model [Eq. (29)] yields a center manifold,

E=k(1-26)2+0(&}), (30)
and a order parameter equation,
E, =€k, +yk(1—2€)E +0(E) . 31)

In our ansatz of ¥ and V,, we neglected the higher order
terms O( ) as a first approximation, which is the first
reason for not obtaining the exact modes. A second
reason is given by the general ansatz of V,: We do not
assume a pitchfork bifurcation in advance, but minimize
a more general ansatz. The minimum of this ansatz does
not lead to an exact pitchfork bifurcation and, therefore,
the exact modes are not obtained. However, the oc-
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currence of the pitchfork bifurcation is detected very well
and demonstrated by Fig. 3. There we show the depen-
dence of the coefficients a;(¢) again from the simulated
data of the Haken-Zwanzig model. The dotted line indi-
cates the minimum of the potential V' (¢), the dashed line
corresponds to @; =0 and the little cross marks the value
of a;(¢) given by the coefficients of the integrated ordi-
nary differential equation. The coefficients corresponding
to the minimum are in good agreement with the model,
especially the type of bifurcation is detected clearly:
ay=a, =0 corresponds to the pitchfork bifurcation.

This example shows that our presented algorithm is
able to classify the spatiotemporal signal into the right
type of bifurcation and it yields a good choice of parame-

< \/
0755
M T4 o3 w2 1 00 of 0z 03 o0f 05
020

= e
S

-5 04 03 02 -01 00 01 02 03 04 05

-175

05 04 03 02 01 00 01 02 03 04 05
¢[n]

FIG. 3. Coefficients a;(¢) of a simulated Haken-Zwanzig
model. The dashed line represents ¢; =0, the dotted line the
minimum of the potential in Fig. 1(c). The little cross marks the
coefficients of the simulation.
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ters corresponding to the temporal evolution and the spa-
tial modes of the signal. After detection of the type of bi-
furcation one can define a new least-square-fit potential
V, minimizing the deviation of the given normal form
only, like described in [17], which then leads to the best
choice of parameters corresponding to this specific nor-
mal form.

B. Hopf bifurcation

In the fourth case of a codimension-I instability, the
Hopf bifurcation, there exist two order parameters obey-
ing the normal form

dgl_e——wgl 22a—bgl
e o € ||6]TETE b L g
(32)

The transformation into a complex differential equation,
introducing a complex variable, c(#)=§(z)+i&,(¢)
=r(t)explig(t)], yields

é¢=ac +Blcl* , (33)
with
a=e+tiow, B=a-+ib . (34)

The corresponding least-square-fit potential ¥V, then
reads,

(¢ —ac —Blcl*[*)
V B3
¢ (Jel?)

Again as an example, we assume one stable mode s,
with an approximated center manifold,

(35)

E()=k|c()|*. (36)

The least-square-fit potential V for this scenario, rewrit-
ten in polar coordinates, is then given by

V=V,+V,+V,,

(& —kr?*)*)

SZT ,

v = ((t—er —ar3)*)

TG+

_ {(ré—or—br*?)
(#2)+(r?¢?)

As constraints to fix scaling and rotation of uT,u;, we
require (r?)=c, and £,(¢,)=0, and as a constraint con-
cerning s’ we choose (£2) =c,, which again is taken care
of by a Lagrange parameter.

By variation with respect to s*, k, €, w, a, and b we ob-
tain these parameters as a function of uj, u;. Inserting
them into Eq. (37) yields a nonlinear potential ¥ depend-
ing on uj,u; only

(37)

Vs

v(ul,u))=v,@l,u)+v,u],u)+v,ulu)),
L3y 'GP+ Gu)?y?
C,((al)2+(:uf)?)?

’

V. (ul,ul)=1

(38)
V,(uI,u§)+V¢(uI,uZ)=1—*<;;;1rj$—2—)*
XMy Gy )2+ (y,)?)
with
(rr) (r*) (ri-) (r’g)
Mu= |Gy oy | 7 3y | Y27 <r“45>"
(39)

The occurring correlations { ) can all be written in
terms of £, and §&,,

(r2)=(g+&),
(rH)=&+E)%),
(r&)=&+8&)7°),
(rf)=(§1§1+§2§2) ,

(PP =(E+ENEE +EE)) ,
<'2<}5>=<§1§2_§1§2> >
<"4¢.>=<(§%+§%)(§1§2_§'1§2)) >

which all can be expressed in terms of correlation tensors
and spatial modes uI and u,.

We now still have to consider the constraints &,(z,)=0
and (%) =c,, which yield a further reduction of parame-
ters: If the signal q(¢) consists of three modes @, ©,, and
§ the subspace is three dimensional. u,T can then be ex-
pressed as vectors with three components. Taking the
two constraints concerning u; into account one ends up
with four independent variables, which again can be
transformed by generalized polar coordinates leading to
four angles ¢, ..., ¢, as independent variables. The re-
sulting potential is, therefore, four dimensional,

V=V(¢1,0¢35,) . 41)

To verify our calculations we have simulated a spatiotem-
poral signal by numerical integration of a system of
differential equations showing the normal form like Eq.
(32) and a center manifold like Eq. (36). We obtained the
minimum of the four-dimensional potential by gradient
dynamics, the resulting parameters agreed perfectly with
the parameters of the simulation.

To visualize the potential we have as well simulated a
spatiotemporal signal with the unstable modes @, and @,
only: q(z)=§&(¢£)d;+&,(¢)t,. The phase portrait of the
amplitudes of the simulated example is shown in Fig.
4(a). The trajectory starts near the fix point §,=§,=0
and moves into the limit cycle. The subspace of the tra-
jectory q(¢) is then two dimensional, the modes uI,u}L can
be expressed as two-dimensional vectors

(40)
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fo [ r_ |2
= = 42
M Y1 L § 2} “2)
To fulfill the first constraint, &,(¢,)=0, we obtain
q,(ty)
= , Y=— . (43)
X1=VV, ¥V 4:(10)

After introducing polar coordinates and considering Eq.
(43), the second constraint {72) =c,, yields

(a)
0.10

=)

« 0.00 B

h \ /
-0.10

-0.10 ~0.05 0.00 005 0.10
£

(b)

o[nl [

0.40

0.30

0.20

0.10

0.26 050 076 ¢ [n]

FIG. 4. (a) Phase portrait of the amplitudes £,(¢) and &,(¢) of
a simulated super-critical Hopf bifurcation [Eq. (32), €=0.05,
©=1,a=~—5, and b=75]. (b) Two-dimensional least-square-fit
potential V,(¢,0) corresponding to the simulated Hopf bifurca-
tion. The values of the potential V(¢,0) are given by different
grey values: Black represents the minimum of the potential,
white the maximum. The potential shows one distinct
minimum and the expected symmetry V(¢—7/2,0=m/2)
=V(p+m/2,0=1m/2).

172
cr .
X, 7‘_1 cos¢ sinf ,
c 172
r . .
sing sinf , (44)
N, ¢
172
Vo= —}é cosO ,

with the eigenvalues A; of PCA. Thus the resulting po-
tential is two dimensional depending only on two angles
¢,0. It shows the following reflection and translational
symmetries:

Vir+¢,0)=V(r—¢,0)
T 4T |y T
VI S He T 6=V |40, 45)

Vig,0)=V(d,0+m),

due to the still possible scaling of u’;,u;r or both with —1.
Therefore, it is sufficient to search a minimum in the in-
terval 0=¢ =7 and 0<0=7/2. Figure 4(b) shows the
potential ¥V (¢$,0) of a simulated example showing a
smooth function with no occurrence of any additional
minima. The minimum represents, in perfect correspon-
dence with the simulation, the coefficients of the dynamic
evolution and the spatial modes.

C. A codimension-II instability

In the case of a codimension-II instability with
reflection symmetry the normal form of the two occur-
ring order parameters &,,&, reads

é:ngz
52:‘_.“1.51 +M2§2+C§?_

The least-square-fit potential ¥V, concerning the order pa-
rameters is then given by,

(46)
28, c==%1,

V,=V,+V,,
((§,—7E,)%)
SRAL i -2t 7
(&P

_ {(&y—ag —bg—cEl—dETE)”)

VZ— 2 )
(&%)
with two constraints fixing scaling,

() =c;, (&)=c,. 48)

The stable modes can be dealt with either by adding to
V., a potential V,, in complete analogy to the previous
cases, or by detectmg them in a second step: In the first
step one minimizes only ¥, (with respect to u; T) and then
one checks which of possible center mamfolds occur by
comparing the value of the minimum of ¥V, with respect
to s and fixed u}‘.

Minimizing V, with respect to the coefficients of the
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temporal evolution and inserting them back into V,, re-
sults in

(£:6:)°
| 4 (uT,uT)=l——.7 ,
TR E (e
Vatuhud=1— el oyl 69
2

with
ylul, el 1=((£,6)),(£:6,), (6,61, (L8267 (50)

and

(82) (&&) (&) (8&)
o ey @ ey g
Mlvwl= | ey (gg) (&) (g | OV

(£16,) (£183) (&&) (&€

Again, all occurring expressions can be written in terms
of correlation tensors I';,A;,A; and spatial modes uI,uz.

Searching the minimum of ¥, with respect to uJ{ and u;,
one has to ensure that uJ{ and u; are linearly indepen-
dent, if not the matrix M cannot be inverted.

For the purpose of visualization of the potential
V,(ui,u;), we simulated a spatiotemporal signal
q(t)=§&,(1)u, +&,(2)u,, by integrating Eq. (46) and assum-
ing two spatial modes @;,%,. Figure 5(a) shows the trajec-
tory in phase space of an example in which there exist
two unstable foci and a saddle point, the trajectory mov-
ing into a limit cycle.

Because of the two-dimensional subspace the two spa-
tial modes uI,u; are two dimensional and can be written
in 2polar coordinates fulfilling the constraints, (£3)=c;,
(&3)=c,

A7 VY2cosd

Ay V2%sing

A7 Y2cos0

Ay 1/%sing

“Jlr: c1

uj=v"c,

. (52)

Therefore, the potential ¥, depends only on two free pa-
rameters ¢, 6, again with translational symmetry

V,($,0)=V,(¢+m0)=V,(,0+7) . (53)

Figure 5(b) shows the potential V,(#,0) of the simulated
example, a smooth function with one distinct local
minimum representing, in perfect agreement with the
simulation, all parameters of the temporal evolution and
spatial modes.

D. Blinking states

In this example we would like to demonstrate the ap-
plication of our algorithm to a spatiotemporal signal ob-
tained by numerical integration of a partial differential
equation, the so-called ‘“blinking state.” It has been ex-
perimentally observed in convection of binary mixtures
[20] and can be modeled [21] by a generalized Ginzburg-
Landau equation for a complex order parameter field
W(x,t)

W(x,t)=[e+iw, —ia(1+32)—(1+32)?
— | W(x, )2 ]W(x,t) . (54)

Figure 6(a) shows the real part of the spatiotemporal sig-
nal, Re(W¥(x,t)), obtained by numerical integration of (54)
considering boundary conditions,

W(xg,)=0,W(x0,1)=0, x,=0,T, (55)

and parameter values €e=0.1, a=0.4, o, =3a, and I'=31
(with a spatial discretization of 50 points). A theoretical
analysis [21] of the model yields two linear unstable
modes, u,(x) and u,(x), with different parity, which

(a)
7.0
x1072
3.5
& 0.0
-35
-7.0
-0.4 0.0 0.4
3
(b)
0.76
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-0.26 0.00 026 ¢ [n]

FIG. 5. (a) Phase portrait of the amplitudes &,(¢) and §,(¢) of
a simulated codimension-two bifurcation [Eq. (46), u,;=0.02,
1, =0.03, c =—1]. (b) Least-square-fit potential V,(¢,0) corre-
sponding to the simulated codimension-two bifurcation with the
same color coding as in Fig. 4(b). There occurs again one dis-
tinct minimum and the expected symmetry of a torus.



C. UHL, R. FRIEDRICH, AND H. HAKEN

3898

(57)

— =T T - e el Wik ~
e == ST
——— — —= S e

|||||| = Py
- - = =~ | s d ===
e = ———= =
"3 ny === == | Y= p———
. = = . ===
S _— e ===
—_ = | @@ [ ==

,._,%//f//%%//g/f/yj%_m

._._.__.._._ TR HISIIN TR YRR T INTH E UL LT

(d)

(A —ay |E(DP—ay &, (D]21E,(2)

—b EX)ET()+O (&
—b,E1(1)EF (1) +O (&
\l
1
|

51(1):[7\1_‘111|§1(1)|2_‘112|§2(t)|2]§1(t)

< m. 3
il 4 ::_“,.:, \
: ::.,,f//. \
Iy \
QUi \

FIG. 6. (a) Re[W(x,?)], obtained by integration of Eq. (54), (b) Re(,(¢)v,(x)), (c) Re(7,(#)v,(x)), both obtained by PCA of the sig-
W(x,t)

nal W(x,1), (d) Re(&,(t)u,(x)), and (e) Re(&,(#)u,(x)), both obtained by the presented method.

can be expressed in terms of ordinary differential equa-
\
!
|

The dynamics of the amplitudes of the unstable modes
tions,
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FIG. 7. (a) n,(2) and 7,(2), both corresponding to the PCA modes of the signal W(x,?), (b) £,(¢) and &,(¢), both corresponding to

the modes obtained by the presented method (solid line corresponds to the real part, dashed line to the imaginary part).
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which correspond in the case of the blinking state to a
quasiperiodic mode interaction.

Analyzing the simulated spatiotemporal signal W(x,?)
with PCA yields two dominant complex modes,
v (x),v,(x). The corresponding complex amplitudes,
7,(2),m,(¢) are shown in Fig. 7(a). The contribution of
the PCA modes to the signal is shown in Figs. 6(b) and
6(c). There is no symmetry of the modes recognizable,
and the PCA modes do not correspond to the theoretical
modes, and therefore, do not lead to the simple order pa-
rameter equations [Egs. (57)].

Application of the presented algorithm, by introducing
a least-square-fit potential considering the order parame-
ter equations (57), one obtains complex spatial modes cor-
responding to the unstable modes, u(x),u,(x). Figure
7(b) shows the corresponding amplitudes, &,(¢) and &,(?),
and Figs. 6(d) and 6(c) presents the contribution of these
modes to the signal. Clearly the symmetry of the modes
can be recognized and the effect of the different time-
depending phases of the amplitudes then leads to the spa-
tiotemporal signal [Fig. 6(a)].

Summarizing this example, we would like to clarify
similarities and differences between PCA and our
presented method. Both, PCA and the presented
method, yield the same spatiotemporal signal, but there
are two big differences between these two approaches:
First, symmetries of the modes can be lost by PCA, like
this example clearly demonstrates. And second, an ad-
vantage of our presented method concerns the recon-
struction of the signal by integrating ordinary differential
equations. The number of coefficients that have to be cal-
culated numerically from the signal, are much smaller
with our algorithm than in the case of PCA. Both points
are due to the fact that we minimize a least-square-error
function of assumed order parameter equations, leading
to a simultaneous search of dynamically and spatially
relevant parameters, whereas PCA represents the search
of a best converging mode expansion, without consider-
ing symmetries, underlying normal forms or the underly-
ing dynamics.

V. CONCLUSIONS

We have derived a method for the determination of or-
der parameters and corresponding center manifolds in
spatiotemporal signals. It should be a helpful tool to ana-
lyze experimental data emerging from nonlinear self-
organizing systems near instabilities. The occurring
mode interaction in the vicinity of the critical points can
be determined by the presented extremum principle. An
advantage of the presented algorithm results from the
simultaneous determination of spatial modes and parame-

ters describing the temporal evolution. Our method
J
(1+¢,A,)T, —Tyuft
L [}\'S’ {uT} ]: “F3:uJ{:u; _F4:UT'U'T' T T
—F4:u.{:u;:u§ — FS;uT ut u* uT u’3r

- I‘S:uT:u

—I‘(,:ut:u
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yields nonlinear equations with the occurrence of higher
order correlation tensors both of the signal and the time
derivative of the signal. In this respect it represents an
alternative to PCA and similar approaches, like [22],
where spatial modes are obtained out of linear equations
and second order correlation tensors.
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APPENDIX: ELIMINATION OF PARAMETERS

The starting point is the potential ¥ [Eq. (9)],
((as"—f,[{qu"}]?)

CS
((qu'—f£,[{qu}]D?)
M 2 ((quh?) ’

w1th A, representing a Lagrange parameter fixing scaling
of s and f, and f, being nonlinear functions in u

+A,[((gsNH?) —¢,]

V=3

(A1)

fs[{quT} 1= 2 k(uu ‘qu qll
u,u
+ 3 k@ quiquiqut+ -,
u,u',u”

u',u"

(3) t
+ 2 ayyryqu’

u',u',u'"
Xqu/quuluT_F .
(a ) Variation of the potential [Eq. (A1)] with respect to
N ksulu2 ks,;"l’uzu yields,

(((1+e,ry)as"— £, [ {qu'} 1)) =0,
((asH—f£,[{qu'} )(qu])qu))) =0,
(((asH—f£,[{qu'} 1)(qu]}qui)qu))) =0,

which represents a homogeneous linear set of equations
for the variables x,

= (s ki k)T
as a function of {u }
LA, {u"}]x=0, (A2

with

— l"4:uT:u'T:u”T

IT, HT. T. t
u,

Tt u* uJ{ u§
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We used the notation of higher order correlation tensors
introduced in Sec. IV. To obtain nontrivial solutions, the
determinant of the matrix L[A, {u*}] has to vanish,
which leads to an equation for the Lagrange parameters
A

s

detL [A,, {u}]=0=21,=2,[{u'}]. (A3)
Inserting Eq. (A3) back into the homogeneous set of Egs.
(A2) and solving for x, one obtains the variables,

st ksu1 uy? s(u31)u2u3 as a function of { T}

x=x[{uT}] . (A4)
(b) Variation of the potential [Eq. (A1)] with respect to

r, afuTu
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<qu —f.{au}D)=0,
((qu'—£,[{qu"} Dqu’) =0,
((qu'—f£,[{qu'} (qu](qu])) =0,

((qu'—£,[{qu"} )(qu])qu))qu)) =0,

which represents a nonhomogeneous linear set of equa-
tions for the variables a,

) (1) ,(2) (3) T
2@y 5 Qyuy ’auuluzua)

a—(a" 142

as a function of {u }:
M{{u"}la=y[(u'}], (A3)

with

I‘3:u’lr:u”T:u”'Jr

HT:uluT

I"6...

al? all, a,ﬂﬁ)luz, ‘1;(431 yu, Yields,
1 FI:uT I“Z:u'T:u"T
I‘l:uJr I‘z(:qu)2 F3:uT-u’T~ 't
M[{u'}])= tod toatoat tog/ ot oa A SR .
I'yupu, Typu'upu, Fge'a”upw, o'’ a’ g,
I‘a... F4... I‘S...
and

y{u1=(A ', AuN? AyuTalud, A e ululal)? .

"} with detM [ {u’
, as a function of {uT]:

For sets of vectors {u

(3)
U uyUsg

a=a[{u'}]=M""[{«T}Iy[{u"}].

a

Inserting finally Eqs. (A4) and (A6) into Eq. (A1), we end up with a potential ¥ depending on {u

v=vi{u'],
which corresponds to Eq. (11) of Sec. III C.

0) (1) (2)

} 170, Eq. (A5) can be inverted, and we obtain the variables, a,”’, a, ", @,y 4,

(A6)
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FIG. 2. (a) Simulated spatial modes @ and 8, (b) the resulting
two vectors of PCA, and (¢) modes, obtained by our method.
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FIG. 4. (a) Phase portrait of the amplitudes &,(z) and &,(1) of
a simulated super-critical Hopf bifurcation [Eq. (32), ¢=0.05,
®w=1,a=—5, and b=75]. (b) Two-dimensional least-square-fit
potential V,(¢,8) corresponding to the simulated Hopf bifurca-
tion. The values of the potential V(¢,8) are given by different
grey values: Black represents the minimum of the potential,
white the maximum. The potential shows one distinct
minimum and the expected symmetry V(¢—=w/2,0=m/2)
=V(¢+m/2,0=m/2).
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FIG. 5. (a) Phase portrait of the amplitudes £,(¢) and &,(t) of
a simulated codimension-two bifurcation [Eq. (46), p,=0.02,
1,=0.03, ¢ = —1]. (b) Least-square-fit potential ¥,(¢,6) corre-
sponding to the simulated codimension-two bifurcation with the
same color coding as in Fig. 4(b). There occurs again one dis-
tinct minimum and the expected symmetry of a torus.



